અહી $\mathrm{f}(\mathrm{x})$ એ $3$ ઘાતાંક વાળી બહુપદી છે કે જેથી $\mathrm{k}=2,3,4,5 $ માટે $\mathrm{f}(\mathrm{k})=-\frac{2}{\mathrm{k}}$ થાય છે તો $52-10 \mathrm{f}(10)$ ની કિમંત મેળવો.
$26$
$36$
$52$
$87$
જો વિધેય $f(x) = \sqrt {\ln \left( {m\sin x + 4} \right)} $ નો પ્રદેશગણ $R$ હોય તો $m$ ની ........... શક્ય પુર્ણાક કિમતો મળે.
$f(x) = \frac{1}{{\sqrt {{{\log }_{\frac{\pi }{4}}}({{\sin }^{ - 1}}x) - 1} }}$ નો પ્રદેશગણ મેળવો.
ધારો કે $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ એ નીચે આપેલ મુજબ વ્યાખ્યાયિત છે.
$f(x+y)+f(x-y)=2 f(x) f(y), f\left(\frac{1}{2}\right)=-1 $ તો $\sum_{\mathrm{k}=1}^{20} \frac{1}{\sin (\mathrm{k}) \sin (\mathrm{k}+\mathrm{f}(\mathrm{k}))}$ ની કિમંત મેળવો.
ધારોકે $A=\{1,2,3,5,8,9\}$, તો $f: A \rightarrow A$ હોય તેવા પ્રત્યેક $f(m \cdot n)=f(m) \cdot f(n)$ માટે $m, n \in A$ થાય તેવા શક્ય વિધેયો $m \cdot n \in A$ ની સંખ્યા $..........$ છે.
ધારો કે $f : R \rightarrow R$ એ સતત વિધેય છે કે જેથી $f(3 x)-f(x)=x$ છે જો $f(8)=7$ હોય તો $f(14)$ ની કિમંત મેળવો.