$100$ प्रेक्षणों के समान्तर माध्य में यादृच्छिक त्रुटि $(random\, error) x$ है, तो $400$ प्रेक्षणों के समान्तर माध्य में यादृच्छिक त्रुटि होगी
$4x$
$\frac{1}{4}x$
$2x$
$\frac{1}{2}x$
एक भौतिक राशि $Q$ सम्बन्ध $Q=\frac{\mathrm{a}^4 \mathrm{~b}^3}{\mathrm{c}^2}$ के अनुसार $\mathrm{a}, \mathrm{b}$ तथा $\mathrm{c}$ राशियों पर निर्भर करती है। $\mathrm{a}, \mathrm{b}$ तथा $\mathrm{c}$ में प्रतिशत त्रुटियों क्रमशः $3 \%, 4 \%$ तथा $5 \%$ है। तब $\mathrm{Q}$ में प्रतिशत त्रुटि है :
राष्ट्रीय प्रयोगशाला में स्थित एक मानक घड़ी से तुलना करके दो घड़ियों की जाँच की जा रही है। मानक घडी जब दोपहर के $12:00:00$ का समय दर्शाती है, तो इन दो घड़यों के पाठ्यांक इस प्रकार हैं
घड़ी $1$ | घड़ी $2$ | |
सोमवार | $12:00:05$ | $10:15:06$ |
मंगलवार | $12:01:15$ | $10:14:59$ |
बुधवार | $11:59:08$ | $10:15:18$ |
बृहस्पतीवार | $12:01:50$ | $10:15:07$ |
शुक्रवार | $11:59:15$ | $10:14:53$ |
शनिवार | $12:01:30$ | $10:15:24$ |
रविवार | $12:01:19$ | $10:15:11$ |
यदि आप कोई ऐसा प्रयोग कर रहे हों जिसके लिए आपको परिशुद्ध समय अंतराल मापन की आवश्यकता है, तो इनमें से आप किस घडी को वरीयता देंगे? क्यों ?
किसी घड़ी द्वारा मापे गए समय अन्तरालों के पाठयांक नीचे दिए गए हैं:
$1.25 \,s , 1.24 \,s , 1.27\, s , 1.21 \,s$ और $1.28s$
इन प्रेक्षणों की आपेक्षिक प्रतिशत त्रुटि $........\,\%$ है?
ऊष्मा के जूल नियम के अनुसार उत्पन्न ऊष्मा $H = {I^2}\,Rt$ जहाँ $I$ धारा, $R$ प्रतिरोध तथा $t$ समय है। यदि $I, R$ तथा $t$ के मापन में त्रुटियाँ क्रमश: $3\%, 4\%$ तथा $6\%$ हैं तो $H$ के मापन में त्रुटि है
घन की आकृति वाले किसी पदार्थ का घनत्व, उसकी तीन भुजाओं एवं द्रव्यमान को माप कर, निकाला जाता है। यदि द्रव्यमान एवं लम्बाई कों मापने में सापेक्ष त्रुटियाँ क्रमशः $1.5 \%$ तथा $1 \%$ हो तो घनत्व को मापने में अधिकतम त्रुटि ......... $\%$ होगी