राष्ट्रीय प्रयोगशाला में स्थित एक मानक घड़ी से तुलना करके दो घड़ियों की जाँच की जा रही है। मानक घडी जब दोपहर के $12:00:00$ का समय दर्शाती है, तो इन दो घड़यों के पाठ्यांक इस प्रकार हैं
घड़ी $1$ | घड़ी $2$ | |
सोमवार | $12:00:05$ | $10:15:06$ |
मंगलवार | $12:01:15$ | $10:14:59$ |
बुधवार | $11:59:08$ | $10:15:18$ |
बृहस्पतीवार | $12:01:50$ | $10:15:07$ |
शुक्रवार | $11:59:15$ | $10:14:53$ |
शनिवार | $12:01:30$ | $10:15:24$ |
रविवार | $12:01:19$ | $10:15:11$ |
यदि आप कोई ऐसा प्रयोग कर रहे हों जिसके लिए आपको परिशुद्ध समय अंतराल मापन की आवश्यकता है, तो इनमें से आप किस घडी को वरीयता देंगे? क्यों ?
The range of variation over the seven days of observations is $162 \;s$ for clock $1$ , and $31 \,s$ for clock $2 .$ The average reading of clock $1$ is much closer to the standard time than the average reading of clock $2 .$ The important point is that a clock's zero error is not as significant for precision work as its vartation, because a zero-error can always be easily corrected. Hence clock $2$ is to be preferred to clock $1$
कोई भौतिक राशि $\mathrm{P}$ निम्न प्रकार दी गई है :
$P=\frac{a^2 b^3}{c \sqrt{d}}$
$a, b, c$ एवं $d$ को मापने में हुई प्रतिशत त्रुटि क्रमशः $1 \%, 2 \%, 3 \%$ एवं $4 \%$ है। राशि $\mathrm{P}$ को मापनें में हुई प्रतिशत त्रुटि होगी:
नीचे दो कथन दिये गये है: एक को अभिकथन $A$ तथा दूसरे को कारण $R$ से चिन्हित किया जाता है। अभिकथन $A$ : $(5 \pm 0.1) \mathrm{mm}$ त्रिज्या एवं एक निश्चित घनत्व की एक गोलाकार वस्तु एक नियत घनत्व के द्रव में गिर रही है। इसके सीमान्त वेग की गणना में प्रतिशत त्रुटि $4 \%$ है।
कारण $R$ : द्रव में गिरती हुई गोलाकार वस्तु का सीमान्त वेग इसकी त्रिज्या के व्युत्क्रमानुपाती होता है। उपरोक्त कथनों के संदर्भ में, नीचे दिये गये विकल्पों में से सही उत्तर चुनिए।
$l$ लम्बाई के ताँबे के पतले तार के ताप में $10^o C$. की वृद्धि करने पर इसकी लम्बाई में $ 2\%$ की वृद्धि हो जाती है। यदि ताँबे की वर्गाकार प्लेट (जिसकी भुजा की लम्बाई l है) के ताप में $10^o C$ की वृद्धि कर दी जाए तो इसके क्षेत्रफल में होने वाली प्रतिशत वृद्धि ......... $\%$ होगी
किसी वस्तु के पदार्थ का आपेक्षिक घनत्व इसे पहले वायु में फिर पानी में तोल कर मापा गया। यदि वायु में भार ($5.00 \pm 0.05$) न्यूटन तथा पानी में भार ($4.00 \pm 0.05$) न्यूटन है, तो आपेक्षिक घनत्व में अधिकतम प्रतिशत त्रुटि होगी
एक छात्र सूत्र $Y =\frac{ MgL ^{3}}{4 bd ^{3} \delta}$ का प्रयोग करके यंग प्रत्यास्थता गुणांक ज्ञात करता है। बिना सार्थक त्रुटि के $g$ का मान $9.8\, m / s ^{2}$ लिया जाता है तथा उसके प्रेक्षण निम्नलिखित हैं।
भौतिक राशियां | माप के लिए प्रयुक्त उपकरण का अल्पतमांक | प्रेक्षित मान |
द्रव्यमान $({M})$ | $1\; {g}$ | $2\; {kg}$ |
छड़ की लम्बाई $(L)$ | $1\; {mm}$ | $1 \;{m}$ |
छड़ की चौड़ाई $(b)$ | $0.1\; {mm}$ | $4\; {cm}$ |
छड़ की मोटाई $(d)$ | $0.01\; {mm}$ | $0.4 \;{cm}$ |
अवनमन $(\delta)$ | $0.01\; {mm}$ | $5 \;{mm}$ |
$Y$ के माप में भिन्नात्मक त्रुटि है?