वृत्तों ${x^2} + {y^2} - 16x + 60 = 0,\,{x^2} + {y^2} - 12x + 27 = 0$ तथा ${x^2} + {y^2} - 12y + 8 = 0$ का मूलाक्ष केन्द्र हैं
$(13, 33/4)$
$(33/4, -13)$
$(33/4, 13)$
इनमें से कोई नहीं
वृत्तों $3{x^2} + 3{y^2} - 7x + 8y + 11 = 0$ तथा ${x^2} + {y^2} - 3x - 4y + 5 = 0$ का मूलाक्ष है
माना वृत्त $C$, बिन्दु $A (2,-1)$ तथा $B (3,4)$ से गुजरता है। रेखाखण्ड $AB$, वृत्त $C$ का व्यास नहीं है। यदि वृत्त $C$ की त्रिज्या $r$ तथा इसका केन्द्र, वृत्त $( x -5)^2+( y -1)^2=\frac{13}{2}$ पर स्थित है, तो $r ^2$ बराबर है :
वृत्तों $x^2+y^2-18 x-15 y+131=0$ तथा $\mathrm{x}^2+\mathrm{y}^2-6 \mathrm{x}-6 \mathrm{y}-7=0$ के उभयनिष्ठ स्पर्श रेखाओं की संख्या है :
वृत्त ${x^2} + {y^2} - 2x = 0$ द्वारा रेखा $y = x$ पर काटा गया अन्त:खण्ड $AB$ है। ऐसा वृत्त जिसका व्यास $AB$ है, का समीकरण है
यदि दो वृत्त ${(x - 1)^2} + {(y - 3)^2} = {r^2}$ तथा ${x^2} + {y^2} - 8x + 2y + 8 = 0$ दो भिन्न - भिन्न बिन्दुओं पर प्रतिच्छेद करते हों, तो