बिन्दु आवेश $100\,\mu C$ के कारण इससे $9$ मीटर की दूरी पर विद्युत विभव होगा
${10^4}\,V$
${10^5}\,V$
${10^6}\,V$
${10^7}\,V$
किसी क्षेत्र में मूल बिन्दु के चारों ओर विद्युत क्षेत्र एक समान है एवं $x$ - अक्ष के अनुदिश कार्यरत् है। मूल बिन्दु को केन्द्र मान कर एक छोटा सा वृत्त खींचा जाता है जो कि अक्षों को बिन्दुओं $A, B, C$ तथा $D$ पर काटता है। यदि इन बिन्दुओं के निर्देशांक क्रमश: $(a, 0), (0, a), (-a, 0), (0, -a)$ हैं तब किसी बिन्दु पर विभव न्यूनतम होगा
$r$ तथा $R$ त्रिज्या $( > r)$ के दो संकेन्द्रीय एवं खोखले गोलों पर आवेश $Q$ इस प्रकार से वितरित है कि इनके पृष्ठीय आवेश घनत्व समान हैं। इनके उभयनिष्ठ केन्द्र पर विभव होगा
आवेश $Q,$ एक $L$ लम्बाई की छड़ $AB$ चित्र में दर्शाया गया है, पर समान रूप से वितरित हो जाता है। छड़ के सिरे $A$ से $L$ दूरी पर स्थित बिन्दु $O$ पर विघुत विभव का मान होगा
धातुओं के बने हुए दो गोलाकार समकेन्द्रीय खोलों की त्रिज्या $R$ और $4 R$ है तथा इन पर क्रमश: $Q _{1}$ और $Q _{2}$ आवेश हैं। यदि दोनों खोलों पर सतहीय आवेश घनत्व (surface charge density) समान हो तो विभवान्तर $V ( R )- V (4 R )$ का मान है :
दो आवेशित अवरोधी गोलाकारों की त्रिज्या क्रमश: $20\,cm$ और $25\,cm$ है और दोनों पर समान वैद्युत आवेश $Q$ है। इन्हेंं तांबे के तार के साथ संयोजित किया गया है