सरल रेखा $x + 4y = 4$ का दीर्घवृत्त ${x^2} + 4{y^2} = 4$ के सापेक्ष ध्रुव है
$(1, 4)$
$(1, 1)$
$(4, 1)$
$(4, 4)$
यदि किसी दीर्घवृत्त की नाभियों के बीच की दूरी उसकी लघु अक्ष के बराबर हो, तो उसकी उत्केन्द्रता होगी
दीर्घवृत्त $4{x^2} + 9{y^2} + 8x + 36y + 4 = 0$ की उत्केन्द्रता है
वक्र $16{x^2} + 25{y^2} = 400$ की नाभियाँ हैं
दीर्घवृत्त $9{x^2} + 36{y^2} = 324$, जिसकी नाभियाँ $S$ तथा $S'$ है, पर $P$ कोई बिन्दु है, तब $SP + S'P$ का मान होगा
दीर्घवृत्तों $\mathrm{E}_{\mathrm{k}}: \mathrm{kx}^2+\mathrm{k}^2 \mathrm{y}^2=1, \mathrm{k}=1,2, \ldots ., 20$ का विचार कीजिए। माना $C_k$ वह वृत्त है, जो दीर्घवृत्त $E_k$ के अन्त्य बिंदुओं (एक लघु अक्ष पर तथा दूसरा दीर्घ अक्ष पर) को मिलाने वाली चार जीवाओं को स्पर्श करता है। यदि वृत्त $C_k$ की त्रिज्या $r_k$ है, तो $\sum_{\mathrm{k}=1}^{20} \frac{1}{\mathrm{r}_{\mathrm{k}}^2}$ का मान है :