माना वत्त $x ^{2}+ y ^{2}=25$ के बिंदु $R (3,4)$ पर स्पर्श रेखा $x$-अक्ष तथा $y$-अक्ष को क्रमशः बिंदुओं $P$ तथा $Q$ पर मिलती है। यदि मूलबिंदु $O$ से होकर जाने वाले वत्त, जिसका केन्द्र त्रिभुज $OPQ$ का अंतः केन्द्र है, की त्रिज्या $r$ है, तो $r^{2}$ बराबर है
$\frac{529}{64}$
$\frac{125}{72}$
$\frac{625}{72}$
$\frac{585}{66}$
बिन्दु $(0, 0)$ से वृत्त ${x^2} + {y^2} + 2x + 6y - 15 = 0$ पर खींची जा सकने वाली स्पर्श रेखाओं की संख्या है
रेखा $x\cos \alpha + y\sin \alpha = p$, वृत्त ${x^2} + {y^2} - 2ax\cos \alpha - 2ay\sin \alpha = 0$ की स्पर्श रेखा होगी, यदि $p = $
वृत्त ${x^2} + {y^2} = 4$ के उन स्पर्शियों के समीकरण जो कि $x + 2y + 3 = 0$ के समान्तर हैं, हैं
माना वत्त $x ^{2}+ y ^{2}+ ax +2 ay + c =0,( a <0)$ द्वारा $x$-अक्ष तथा $y$-अक्ष पर बनाये गये अंतःखंडों की लम्बाईयोँ क्रमशः $2 \sqrt{2}$ तथा $2 \sqrt{5}$ हैं। तो इस वत्त की एक स्पर्श रेखा, जो रेखा $x +2 y =0$ के लम्बवत है, की मूलबिंदु से न्यूनतम दूरी बराबर है
वृत्त ${x^2} + {y^2} = {a^2}$ की स्पर्श रेखा का समीकरण जो कि सरल रेखा $y = mx + c$ के लम्बवत् है, होगा