Let $\lambda, \mu \in R$. If the system of equations
$ 3 x+5 y+\lambda z=3 $
$ 7 x+11 y-9 z=2 $
$ 97 x+155 y-189 z=\mu$
has infinitely many solutions, then $\mu+2 \lambda$ is equal to :
$25$
$24$
$27$
$22$
The values of $a$ and $b$, for which the system of equations $2 x+3 y+6 z=8$ ; $x+2 y+a z=5$ ; $3 x+5 y+9 z=b$ has no solution, are:
If $\left| {\,\begin{array}{*{20}{c}}{x + 1}&3&5\\2&{x + 2}&5\\2&3&{x + 4}\end{array}\,} \right| = 0$, then $ x =$
$\left| {\,\begin{array}{*{20}{c}}{11}&{12}&{13}\\{12}&{13}&{14}\\{13}&{14}&{15}\end{array}\,} \right| = $
If ${\Delta _r} = \left| {\begin{array}{*{20}{c}}
r&{2r - 1}&{3r - 2} \\
{\frac{n}{2}}&{n - 1}&a \\
{\frac{1}{2}n\left( {n - 1} \right)}&{{{\left( {n - 1} \right)}^2}}&{\frac{1}{2}\left( {n - 1} \right)\left( {3n - 4} \right)}
\end{array}} \right|$ then the value of $\sum\limits_{r = 1}^{n - 1} {{\Delta _r}} $
The determinant $\,\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&2&3\\1&3&6\end{array}\,} \right|$ is not equal to