If $A, B, C$ are the angles of triangle then the value of determinant $\left| {\begin{array}{*{20}{c}}
  {\sin \,2A}&{\sin \,C}&{\sin \,B} \\ 
  {\sin \,C}&{\sin \,2B}&{\sin A} \\ 
  {\sin \,B}&{\sin \,A}&{\sin \,2C} 
\end{array}} \right|$ is

  • A

    $\pi $

  • B

    $0$

  • C

    $2\pi $

  • D

    None

Similar Questions

$\left| {\,\begin{array}{*{20}{c}}{1/a}&1&{bc}\\{1/b}&1&{ca}\\{1/c}&1&{ab}\end{array}\,} \right| = $

Let $A=\left(\begin{array}{cc}4 & -2 \\ \alpha & \beta\end{array}\right)$ . If $A ^{2}+\gamma A +18 I = O$, then $\operatorname{det}( A )$ is equal to

  • [JEE MAIN 2022]

If $C = 2\cos \theta $, then the value of the determinant $\Delta = \left| {\,\begin{array}{*{20}{c}}C&1&0\\1&C&1\\6&1&C\end{array}\,} \right|$ is

For some $a, b$, let $f(x)=\left|\begin{array}{ccc}a+\frac{\sin x}{x} & 1 & b \\ a & 1+\frac{\sin x}{x} & b \\ a & 1 & b+\frac{\sin x}{x}\end{array}\right|, \quad x \neq 0$, $\lim _{ x \rightarrow 0} f ( x )=\lambda+\mu a + vb$. Then $(\lambda+\mu+v)^2$ is equal to:

  • [JEE MAIN 2025]

Let $a, b, c > 0$ and $\Delta  = \left| \begin{gathered}
  a + b\,\,b\,\,c \hfill \\
  b\, + \,c\,\,c\,\,\,a \hfill \\
  c + a\,\,a\,\,b \hfill \\ 
\end{gathered}  \right| ,$ then which of the following is not correct?