સમાંતર શ્રેણીઓ $3,7,11, \ldots ., 407$ અને $2,9,16, \ldots . .709$ ના સામાન્ય પદોની સંખ્યા મેળવો.
$20$
$17$
$11$
$14$
જો $\frac{1}{p+q},\,\frac{1}{r+p}\,\,$ અને $\frac{1}{q+r}\,$ સમાંતર શ્રેણીમાં હોયતો.........
$a_1$, $a_2$, $a_3$, ......., $a_{100}$ સમાંતર શ્રેણીમાં છે. જ્યાં $a_1 = 3$ અને ${S_p}\, = \,\sum\limits_{i\, = \,1}^p {{a_i},\,1\,\, \le \,\,p\,\, \le \,\,100.} $ છે. કોઈ પણ પૂર્ણાક $n$ માટે $m = 5n$ લો. જો $S_m/S_n$ એ $n$ ઉપર આધારીત ન હોય તો $a_2= ......$
સમાંતર શ્રેણીનાં $n $ પદોનો સરવાળો $nA + n^2B$ છે, જ્યાં $A$ અને $B$ અચળ છે, તો આ શ્રેણીનો સામાન્ય તફાવત....... છે.
જો સમાંતર શ્રેણીમાં આવેલી ત્રણ સંખ્યાઓનો સરવાળો $24$ અને તેમનો ગુણાકાર $440$ હોય તો આ સંખ્યાઓ શોધો.
જો $1,\,{\log _9}\,\left( {{3^{1 - x}}\, + \,2} \right),\,\,{\log _3}\,\left( {{{4.3}^x}\, - \,1} \right)$
સમાંતર શ્રેણીમાં ,હોય તો ${\text{x = }}........$