The number of tangents that can be drawn from $(0, 0)$ to the circle ${x^2} + {y^2} + 2x + 6y - 15 = 0$ is

  • A

    None

  • B

    One

  • C

    Two

  • D

    Infinite

Similar Questions

If $OA$ and $OB$ be the tangents to the circle ${x^2} + {y^2} - 6x - 8y + 21 = 0$ drawn from the origin $O$, then $AB =$

A tangent $P T$ is drawn to the circle $x^2+y^2=4$ at the point $P(\sqrt{3}, 1)$. A straight line $L$, perpendicular to $P T$ is a tangent to the circle $(x-3)^2+y^2=1$.

$1.$ A common tangent of the two circles is

$(A)$ $x=4$ $(B)$ $y=2$ $(C)$ $x+\sqrt{3} y=4$ $(D)$ $x+2 \sqrt{2} y=6$

$2.$ A possible equation of $L$ is

$(A)$ $x-\sqrt{3} y=1$ $(B)$ $x+\sqrt{3} y=1$ $(C)$ $x-\sqrt{3} y=-1$ $(D)$ $x+\sqrt{3} y=5$

Give the answer question $1$ and $2.$

  • [IIT 2012]

Consider a circle $(x-\alpha)^2+(y-\beta)^2=50$, where $\alpha, \beta>0$. If the circle touches the line $y+x=0$ at the point $P$, whose distance from the origin is $4 \sqrt{2}$ , then $(\alpha+\beta)^2$ is equal to................

  • [JEE MAIN 2024]

If a line passing through origin touches the circle ${(x - 4)^2} + {(y + 5)^2} = 25$, then its slope should be

The angle between the pair of tangents from the point $(1, 1/2)$ to the circle $x^2 + y^2 + 4x + 2y -4=0$ is-