Consider a circle $(x-\alpha)^2+(y-\beta)^2=50$, where $\alpha, \beta>0$. If the circle touches the line $y+x=0$ at the point $P$, whose distance from the origin is $4 \sqrt{2}$ , then $(\alpha+\beta)^2$ is equal to................

  • [JEE MAIN 2024]
  • A

    $103$

  • B

    $102$

  • C

    $55$

  • D

    $100$

Similar Questions

Let the tangent to the circle $C _{1}: x^{2}+y^{2}=2$ at the point $M (-1,1)$ intersect the circle $C _{2}$ : $( x -3)^{2}+(y-2)^{2}=5$, at two distinct points $A$ and $B$. If the tangents to $C _{2}$ at the points $A$ and $B$ intersect at $N$, then the area of the triangle $ANB$ is equal to

  • [JEE MAIN 2022]

The co-ordinates of the point from where the tangents are drawn to the circles ${x^2} + {y^2} = 1$, ${x^2} + {y^2} + 8x + 15 = 0$ and ${x^2} + {y^2} + 10y + 24 = 0$ are of same length, are

The angle between the two tangents from the origin to the circle ${(x - 7)^2} + {(y + 1)^2} = 25$ is

The angle between the pair of tangents from the point $(1, 1/2)$ to the circle $x^2 + y^2 + 4x + 2y -4=0$ is-

If $5x - 12y + 10 = 0$ and $12y - 5x + 16 = 0$ are two tangents to a circle, then the radius of the circle is