The number of solutions to $\sin x=\frac{6}{x}$ with $0 \leq x \leq 12 \pi$ is
$1$
$6$
$10$
$12$
If $\left| {\,\begin{array}{*{20}{c}}{\cos (A + B)}&{ - \sin (A + B)}&{\cos 2B}\\{\sin A}&{\cos A}&{\sin B}\\{ - \cos A}&{\sin A}&{\cos B}\end{array}\,} \right| = 0$, then $B =$
The number of values of $\theta$ in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ such that $\theta \neq \frac{n \pi}{5}$ for $n=0, \pm 1, \pm 2$ and $\tan \theta=\cot 5 \theta$ as well as $\sin 2 \theta=\cos 4 \theta$ is
For $n \in Z$ , the general solution of the equation
$(\sqrt 3 - 1)\,\sin \,\theta \, + \,(\sqrt 3 + 1)\,\cos \theta \, = \,2$ is
If $sin\, \theta = sin\, \alpha$ then $sin\, \frac{\theta }{3}$ =
The general solution of the equation $sin^{100}x\,-\,cos^{100} x= 1$ is