If $sin\, \theta = sin\, \alpha$ then $sin\, \frac{\theta }{3}$ =
$sin\, \frac{\alpha }{3}$
$sin \, \left( {\frac{\pi }{3} - \frac{\alpha }{3}} \right)$
$- sin \, \left( {\frac{\pi }{3} + \frac{\alpha }{3}} \right)$
All of the above
The smallest positive root of the equation $tanx\, -\, x = 0$ lies on
The set of values of $x$ satisfying the equation,${2^{\tan \,\,\left( {x\,\, - \,\,{\textstyle{\pi \over 4}}} \right)}}$ $- 2$${\left( {0.25} \right)^{\frac{{{{\sin }^2}\,\left( {x\,\, - \,\,{\textstyle{\pi \over 4}}} \right)}}{{\cos \,\,2x}}}}$ $+ 1 = 0$, is :
Find the general solution of $\cos ec\, x=-2$
The angles $\alpha, \beta, \gamma$ of a triangle satisfy the equations $2 \sin \alpha+3 \cos \beta=3 \sqrt{2}$ and $3 \sin \beta+2 \cos \alpha=1$. Then, angle $\gamma$ equals
The value of $\theta $ in between ${0^o}$ and ${360^o}$ and satisfying the equation $\tan \theta + \frac{1}{{\sqrt 3 }} = 0$ is equal to