The number of values of $\theta$ in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ such that $\theta \neq \frac{n \pi}{5}$ for $n=0, \pm 1, \pm 2$ and $\tan \theta=\cot 5 \theta$ as well as $\sin 2 \theta=\cos 4 \theta$ is
$3$
$2$
$5$
$8$
If $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta ),$ then the value of $\cos \left( {\theta - \frac{\pi }{4}} \right) =$
If $\alpha ,\,\beta ,\,\gamma $ and $\delta $ are the solutions of the equation $\tan \left( {\theta + \frac{\pi }{4}} \right) = 3\,\tan \,3\theta $ , no two of which have equal tangents, then the value of $tan\, \alpha + tan\, \beta + tan\, \gamma + tan\, \delta $ is
Number of solution$(s)$ of the equation $\sin 2\theta + \cos 2\theta = - \frac{1}{2},\theta \in \left( {0,\frac{\pi }{2}} \right)$ is-
General solution of $\tan 5\theta = \cot 2\theta $ is $($ where $n \in Z )$
The general value of $\theta $ that satisfies both the equations $cot^3\theta + 3 \sqrt 3 $ = $0$ & $cosec^5\theta + 32$ = $0$ is $(n \in I)$