If $\sin 3\alpha = 4\sin \alpha \sin (x + \alpha )\sin (x - \alpha ),$ then $x = $
$n\pi \pm \frac{\pi }{6}$
$n\pi \pm \frac{\pi }{3}$
$n\pi \pm \frac{\pi }{4}$
$n\pi \pm \frac{\pi }{2}$
The set of values of $x$ for which the expression $\frac{{\tan 3x - \tan 2x}}{{1 + \tan 3x\tan 2x}} = 1$, is
The only value of $x$ for which ${2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}$ holds, is
The number of values of $x$ for which $sin2x + sin4x = 2$ is
Prove that
$\cos 2 x \cos \frac{x}{2}-\cos 3 x \cos \frac{9 x}{2}=\sin 5 x \sin \frac{5 x}{2}$
The number of solutions of the given equation $\tan \theta + \sec \theta = \sqrt 3 ,$ where $0 < \theta < 2\pi $ is