The number of solutions of the equation $\cos \left(x+\frac{\pi}{3}\right) \cos \left(\frac{\pi}{3}-x\right)=\frac{1}{4} \cos ^{2} 2 x, x \in[-3 \pi$ $3 \pi]$ is

  • [JEE MAIN 2022]
  • A

    $8$

  • B

    $5$

  • C

    $6$

  • D

    $7$

Similar Questions

The number of elements in the set $S=\left\{x \in R : 2 \cos \left(\frac{x^{2}+x}{6}\right)=4^{x}+4^{-x}\right\}$ is$.....$

  • [JEE MAIN 2022]

General solution of $eq^n\, 2tan\theta \, -\, cot\theta  =\, -1$ is

The number of solutions of the equation $\sin \theta+\cos \theta=\sin 2 \theta$ in the interval $[-\pi, \pi]$ is

  • [KVPY 2017]

If $\sqrt 3 \cos \,\theta + \sin \theta = \sqrt 2 ,$ then the most general value of $\theta $ is

Find the principal and general solutions of the equation $\cot x=-\sqrt{3}$