General solution of $eq^n\, 2tan\theta \, -\, cot\theta =\, -1$ is
$n\pi $
$n\pi \,-\, \pi /4$
$n\pi \,+\, \pi /4$
None of these
The equation, $sin^2 \theta - \frac{4}{{{{\sin }^3}\,\,\theta \,\, - \,\,1}} = 1$$ -\frac{4}{{{{\sin }^3}\,\,\theta \,\, - \,\,1}}$ has :
Find the value of $\tan \frac{\pi}{8}$
The roots of the equation $1 - \cos \theta = \sin \theta .\sin \frac{\theta }{2}$ is
If $1 + \cot \theta = {\rm{cosec}}\theta $, then the general value of $\theta $ is
One root of the equation $\cos x - x + \frac{1}{2} = 0$ lies in the interval