If the sum of solutions of the system of equations $2 \sin ^{2} \theta-\cos 2 \theta=0$ and $2 \cos ^{2} \theta+3 \sin \theta=0$ in the interval $[0,2 \pi]$ is $k \pi$, then $k$ is equal to.

  • [JEE MAIN 2022]
  • A

    $3$

  • B

    $6$

  • C

    $9$

  • D

    $12$

Similar Questions

The general solution of $\sin x - 3\sin 2x + \sin 3x = $ $\cos x - 3\cos 2x + \cos 3x$ is

  • [IIT 1989]

If $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta ),$ then the value of $\cos \left( {\theta - \frac{\pi }{4}} \right) =$

The sides of a triangle are $\sin \alpha ,\,\cos \alpha $ and $\sqrt {1 + \sin \alpha \cos \alpha } $ for some $0 < \alpha < \frac{\pi }{2}$. Then the greatest angle of the triangle is.....$^o$

  • [AIEEE 2004]

The smallest positive root of the equation $tanx\,  -\,  x = 0$ lies on

If ${\sin ^2}\theta = \frac{1}{4},$ then the most general value of $\theta $ is