જો $sin \,3x\, = cos\, 2x$ હોય તો અંતરાલ $\left( {\frac{\pi }{2},\pi } \right)$ માં ઉકેલોની સંખ્યા મેળવો.
$3$
$4$
$2$
$1$
જો $\cos ec\,\theta = \frac{{p + q}}{{p - q}}$ $\left( {p \ne q \ne 0} \right)$, તો $\left| {\cot \left( {\frac{\pi }{4} + \frac{\theta }{2}} \right)} \right|$ = .......
જો $f(x) = sinx + 2sin^2x + 3sin^3x + 4sin^4x+....\infty $ ,હોય તો સમીકરણ $f(x) = 2$ ના $x \in \left[ { - \pi ,\pi } \right] - \left\{ { \pm \frac{\pi }{2}} \right\}$ માં કેટલા ઉકેલો મળે?
સમીકરણ $2{\cos ^2}\left( {\frac{x}{2}} \right)\,{\sin ^2}x\, = \,{x^2}\, + \,\frac{1}{{{x^2}}},\,0\,\, \leqslant \,\,x\,\, \leqslant \,\,\frac{\pi }{2}\,\,$ ના ............... ઉકેલો મેળવો
જો $\sin {\rm{ }}\left( {\frac{\pi }{4}\cot \theta } \right) = \cos {\rm{ }}\left( {\frac{\pi }{4}\tan \theta } \right)\,\,,$ તો $\theta = $
સમીકરણ ${\sin ^2}\theta \sec \theta + \sqrt 3 \tan \theta = 0$ નો વ્યાપક ઉકેલ મેળવો.