$[2,3]$ अंतराल में समीकरण $\sin \left(x+x^2\right)-\sin \left(x^2\right)=\sin x$ के कितने हल $x$ संभव हैं :
$0$
$1$
$2$
$3$
यदि $5\cos 2\theta + 2{\cos ^2}\frac{\theta }{2} + 1 = 0, - \pi < \theta < \pi $, तब $\theta = $
किसी त्रिभुज के कोण $\alpha, \beta, \gamma$ समीकरण $2 \sin \alpha+3 \cos \beta=3 \sqrt{2}$ और $3 \sin \beta+2 \cos \alpha=1$ को संतुष्ट करते हैं। तब कोण $\gamma$ है -
निम्नलिखित प्रत्येक समीकरणों का व्यापक हल ज्ञात कीजिए
$\sec ^{2} 2 x=1-\tan 2 x$
यदि $L =\sin ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right)$ तथा $M =\cos ^{2}$$\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right)$ है, तो
यदि $\sin 6\theta + \sin 4\theta + \sin 2\theta = 0,$ तो $\theta = $