$[2,3]$ अंतराल में समीकरण $\sin \left(x+x^2\right)-\sin \left(x^2\right)=\sin x$ के कितने हल $x$ संभव हैं :
$0$
$1$
$2$
$3$
$\theta $ का वे मान, जो ${0^o}$ तथा ${360^o}$ के बीच में है तथा समीकरण $\tan \theta + \frac{1}{{\sqrt 3 }} = 0$ को सन्तुष्ट करते हैं, हैं
किसी त्रिभुज के कोण $\alpha, \beta, \gamma$ समीकरण $2 \sin \alpha+3 \cos \beta=3 \sqrt{2}$ और $3 \sin \beta+2 \cos \alpha=1$ को संतुष्ट करते हैं। तब कोण $\gamma$ है -
$x \in(0, \pi)$ के लिये समीकरण $\sin x+2 \sin 2 x-\sin 3 x=3$ के
समीकरण $2{\sin ^2}\theta + \sqrt 3 \cos \theta + 1 = 0$ को सन्तुष्ट करने वाला न्यूनतम धनात्मक कोण है
माना $S =\left\{\theta \in[-\pi, \pi]-\left\{\pm \frac{\pi}{2}\right\}: \sin \theta \tan \theta+\tan \theta=\sin 2 \theta\right\}$ है। यदि $T =\sum_{\theta \in S } \cos 2 \theta$ है, तो $T + n ( S )$ बराबर है