ચાર સભ્ય ધરાવતા ગણ પરના સ્વવાચક સંબંધની સંખ્યા મેળવો.
${2^{16}}$
${2^{12}}$
${2^8}$
${2^4}$
પ્રાકૃતિક સંખ્યાઓના ગણ $\mathrm{N}$ પર વ્યાખ્યાયિત સંબંધ $\mathrm{R}=\{(x, y): y=x+5$ અને $x<4\}$ સ્વવાચક, સંમિત અથવા પરંપરિત સંબંધ છે કે નહિ તે નક્કી કરો ?
જો $R = \{(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)\}$ એ ગણ $A = \{1, 2, 3, 4\}$ પરનો સંબંધ આપેલ હોય તો સંબંધ $R$ એ . . . . છે.
ધારો કે $\mathbb{N} \times \mathbb{N}$ પર એક સંબંધ $\mathrm{R}$ એ "( $\left.x_1, y_1\right) \mathrm{R}\left(x_2, y_2\right)$ તો અને તો જ $x_1 \leq x_2$ અથવા $y_1 \leq y_2$ " પ્રમાણે વ્યાખ્યાયિત કરેલ છે.
બે વિધાનો ધ્યાને લો:
($I$) $\mathrm{R}$ સ્વવાચક છે પરંતુ સંમિત નથી .
($II$) $R$ પરંપરિત છે
તો નીચેના પૈકી કયુ એક સાયું છે
ધારો કે $A=\{2,3,6,8,9,11\}$ અને $B=\{1,4,5,10,15\}$, ધારો કે $R$ એ $A \times B$ પર ' $(a, b) R(c, d)$ તો અને તો જ $3 a d-7 b c$ બેકી સંખ્યા છે' પ્રમાણે વ્યાખ્યાયિત સંબંધ છે. તો સંબંધ $R$ :
જો ગણ $A = \{1, 2, 3\}, B = \{1, 3, 5\}$ આપેલ છે અને સંબંધ $R:A \to B$ પર વ્યાખ્યાયિત હોય કે જેથી $R = \{(1, 3), (1, 5), (2, 1)\}$. તો ${R^{ - 1}}$ મેળવો.