The number of reflexive relations of a set with four elements is equal to
${2^{16}}$
${2^{12}}$
${2^8}$
${2^4}$
Let $P ( S )$ denote the power set of $S =\{1,2,3, \ldots, 10\}$. Define the relations $R_1$ and $R_2$ on $P(S)$ as $A R_1 B$ if $\left( A \cap B ^{ c }\right) \cup\left( B \cap A ^{ c }\right)=\varnothing$ and $AR _2 B$ if $A \cup B ^{ c }=$ $B \cup A ^{ c }, \forall A , B \in P ( S )$. Then :
Give an example of a relation. Which is Symmetric but neither reflexive nor transitive.
Let $N$ denote the set of all natural numbers. Define two binary relations on $N$ as $R_1 = \{(x,y) \in N \times N : 2x + y= 10\}$ and $R_2 = \{(x,y) \in N\times N : x+ 2y= 10\} $. Then
Let $R_{1}$ and $R_{2}$ be two relations defined on $R$ by $a R _{1} b \Leftrightarrow a b \geq 0$ and $a R_{2} b \Leftrightarrow a \geq b$, then
In order that a relation $R$ defined on a non-empty set $A$ is an equivalence relation, it is sufficient, if $R$