पूर्णांक " $k$ ", जिसके लिए असमिका $x ^{2}-2(3 k -1) x +8 k ^{2}-7>0, R$ में प्रत्येक $x$ के लिए, मान्य है, है
$3$
$2$
$0$
$4$
माना कि $f(x)=x^4+a x^3+b x^2+c$ वास्तविक गुणांकों (real coefficients ) वाला एक ऐसा बहुपद (polynomial) है कि $f(1)=-9$ है। मान लीजिये कि $i \sqrt{3}$, समीकरण $4 x^3+3 a x^2+2 b x=0$ का एक मूल है, जहां $i=\sqrt{-1}$ है। यदि $\alpha_1, \alpha_2, \alpha_3$, और $\alpha_4$, समीकरण $f(x)=0$ के सभी मूल हैं, तब $\left|\alpha_1\right|^2+\left|\alpha_2\right|^2+\left|\alpha_3\right|^2+\left|\alpha_4\right|^2$ का मान. . . . . है।
माना $\lambda \in \mathbb{R}$ है तथा माना समीकरण $\mathrm{E}:|\mathrm{x}|^2-2|\mathrm{x}|+|\lambda-3|=0$ है। तो समुच्चय $\mathrm{S}=\{\mathrm{x}+\lambda: \mathrm{x}, \mathrm{E}$ का एक पूर्णांक हल है $\}$ में सबसे बड़ा अवयव है______________.
यदि $\alpha , \beta , \gamma $ समीकरण ${x^3} + a{x^2} + bx + c = 0$ के मूल हों, तो ${\alpha ^{ - 1}} + {\beta ^{ - 1}} + {\gamma ^{ - 1}} = $
यदि ${x^2} + x + a = 0$ के मूल $a$ से अधिक हैं, तब
यदि $2+3 i$, समीकरण $2 x^{3}-9 x^{2}+ k x-13=0$, $k \in R$ का एक मूल है, तो इस समीकरण का वास्तविक मूल