The two roots of an equation ${x^3} - 9{x^2} + 14x + 24 = 0$ are in the ratio $3 : 2$. The roots will be

  • A

    $6, 4, -1$

  • B

    $6, 4, 1$

  • C

    $-6, 4, 1$

  • D

    $-6, -4, 1$

Similar Questions

If $a \in R$ and the equation $ - 3{\left( {x - \left[ x \right]} \right)^2} + 2\left( {x - \left[ x \right]} \right) + {a^2} = 0$ (where $[x]$ denotes the greatest integer $\leq\,x$)has no integral solution ,then all possible values of $a$ lie in the interval

  • [JEE MAIN 2014]

The number of distinct real roots of $x^4-4 x^3+12 x^2+x-1=0$ is

  • [IIT 2011]

Let $\lambda \in R$ and let the equation $E$ be $| x |^2-2| x |+|\lambda-3|=0$. Then the largest element in the set $S =$ $\{ x +\lambda: x$ is an integer solution of $E \}$ is $..........$

  • [JEE MAIN 2023]

Let $p, q$ be integers and let $\alpha, \beta$ be the roots of the equation, $x^2-x-1=0$, where $\alpha \neq \beta$. For $n=0,1,2, \ldots$, let $a_n=$ $p \alpha^n+q \beta^n$.

$FACT$ : If $a$ and $b$ are rational numbers and $a+b \sqrt{5}=0$, then $a=0=b$.

($1$) $a_{12}=$

$[A]$ $a_{11}-a_{10}$  $[B]$ $a_{11}+a_{10}$  $[C]$ $2 a_{11}+a_{10}$   $[D]$ $a_{11}+2 a_{10}$

($2$) If $a_4=28$, then $p+2 q=$

$[A] 21$   $[B] 14$   $[C] 7$    $[D] 12$

 answer the quetion ($1$) and ($2$)

  • [IIT 2017]

The sum, of the squares of all the roots of the equation $x^2+|2 x-3|-4=0$, is :

  • [JEE MAIN 2025]