The number of points in $(-\infty, \infty)$, for which $x^2-x \sin x-\cos x=0$, is

  • [IIT 2013]
  • A

    $6$

  • B

    $4$

  • C

    $2$

  • D

    $0$

Similar Questions

The total number of solution of $sin^4x + cos^4x = sinx\, cosx$ in $[0, 2\pi ]$ is equal to

Number of solutions of the equation $2^x + x = 2^{sin \ x} +  \sin x$ in $[0,10\pi ]$ is -

The number of solutions to the equation $\cos ^4 x+\frac{1}{\cos ^2 x}=\sin ^4 x+\frac{1}{\sin ^2 x}$ in the interval $[0,2 \pi]$ is

  • [KVPY 2014]

Let $A = \left\{ {\theta \,:\,\sin \,\left( \theta  \right) = \tan \,\left( \theta  \right)} \right\}$ and $B = \left\{ {\theta \,:\,\cos \,\left( \theta  \right) = 1} \right\}$ be two sets. Then

  • [JEE MAIN 2013]

The number of values of $x$ in the interval $\left(\frac{\pi}{4}, \frac{7 \pi}{4}\right)$ for which $14 \operatorname{cosec}^{2} x-2 \sin ^{2} x=21$ $-4 \cos ^{2} x$ holds, is

  • [JEE MAIN 2022]