The number of points in $(-\infty, \infty)$, for which $x^2-x \sin x-\cos x=0$, is
$6$
$4$
$2$
$0$
The general value of $\theta $ satisfying the equation $\tan \theta + \tan \left( {\frac{\pi }{2} - \theta } \right) = 2$, is
Number of solution $(s)$ of equation $cosec\, \theta -cot \,\theta = 1$ in $[0,2 \pi]$ is-
If $2{\cos ^2}x + 3\sin x - 3 = 0,\,\,0 \le x \le {180^o}$, then $x =$
If $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta )$, then $\sin \left( {\theta + \frac{\pi }{4}} \right)$ equals
If the solution for $\theta $ of $\cos p\theta + \cos q\theta = 0,\;p > 0,\;q > 0$ are in $A.P.$, then the numerically smallest common difference of $A.P.$ is