Number of solution $(s)$ of equation $cosec\, \theta -cot \,\theta = 1$ in $[0,2 \pi]$ is-
$4$
$3$
$2$
$1$
If $4{\sin ^4}x + {\cos ^4}x = 1,$ then $x =$
If ${\left( {\frac{{\sin \theta }}{{\sin \phi }}} \right)^2} = \frac{{\tan \theta }}{{\tan \phi }} = 3,$ then the value of $\theta $ and $\phi $ are
The general value $\theta $ is obtained from the equation $\cos 2\theta = \sin \alpha ,$ is
The number of $x \in [0,2\pi ]$ for which $\left| {\sqrt {2\,{{\sin }^4}\,x\, + \,18\,{{\cos }^2}\,x} - \,\sqrt {2\,{{\cos }^4}\,x\, + \,18\,{{\sin }^2}\,x} } \right| = 1$ is
If $2\,cos\,\theta + sin\, \theta \, = 1$ $\left( {\theta \ne \frac{\pi }{2}} \right)$ , then $7\, cos\,\theta + 6\, sin\, \theta $ is equal to