$\sim (p \Rightarrow q) \Leftrightarrow \sim p\; \vee \sim q$ is

  • A

    A tautology

  • B

    A contradiction

  • C

    Neither a tautology nor a contradiction

  • D

    Cannot come to any conclusion

Similar Questions

Among the statements

$(S1)$: $(p \Rightarrow q) \vee((\sim p) \wedge q)$ is a tautology

$(S2)$: $(q \Rightarrow p) \Rightarrow((\sim p) \wedge q)$ is a contradiction

  • [JEE MAIN 2023]

Statement $p$ $\rightarrow$  ~$q$ is false, if

The statement $p \rightarrow  (q \rightarrow p)$  is equivalent to

  • [AIEEE 2008]

The number of ordered triplets of the truth values of $p, q$ and $r$ such that the truth value of the statement $(p \vee q) \wedge(p \vee r) \Rightarrow(q \vee r)$ is True, is equal to

  • [JEE MAIN 2023]

The statement $[(p \wedge  q) \rightarrow p] \rightarrow (q \wedge  \sim q)$ is