$\sim (p \Rightarrow q) \Leftrightarrow \sim p\; \vee \sim q$ is
A tautology
A contradiction
Neither a tautology nor a contradiction
Cannot come to any conclusion
Among the statements
$(S1)$: $(p \Rightarrow q) \vee((\sim p) \wedge q)$ is a tautology
$(S2)$: $(q \Rightarrow p) \Rightarrow((\sim p) \wedge q)$ is a contradiction
Statement $p$ $\rightarrow$ ~$q$ is false, if
The statement $p \rightarrow (q \rightarrow p)$ is equivalent to
The number of ordered triplets of the truth values of $p, q$ and $r$ such that the truth value of the statement $(p \vee q) \wedge(p \vee r) \Rightarrow(q \vee r)$ is True, is equal to
The statement $[(p \wedge q) \rightarrow p] \rightarrow (q \wedge \sim q)$ is