उन पूर्णाकों $x$ की संख्या क्या होगी जो  $-3 x^4+\operatorname{det}\left[\begin{array}{ccc}1 & x & x^2 \\ 1 & x^2 & x^4 \\ 1 & x^3 & x^6\end{array}\right]=0$  को संतुष्ट करते हैं

  • [KVPY 2019]
  • A

    $1$

  • B

    $2$

  • C

    $5$

  • D

    $8$

Similar Questions

यदि $\left| {\,\begin{array}{*{20}{c}}{x + 1}&1&1\\2&{x + 2}&2\\3&3&{x + 3}\end{array}\,} \right| = 0,$ तो $x$ का मान होगा

$\left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right| = $

यदि रैखिक समीकरण निकाय $x + y + z =5$, $x +2 y +2 z =6$, $x +3 y +\lambda z =\mu,(\lambda, \mu \in R )$ के अनन्त हल है, तो $\lambda+\mu$ का मान है

  • [JEE MAIN 2019]

माना कुछ $\alpha, \beta \in \mathbb{R}$ के लिये समीकरण निकाय $ \alpha x+2 y+z=1 $ $ 2 \alpha x+3 y+z=1 $ $ 3 x+\alpha y+2 z=\beta$ है। निम्न में से कौनसा सही नहीं है

  • [JEE MAIN 2023]

माना $\mathrm{A}_1, \mathrm{~A}_2, \mathrm{~A}_3$ तीन A.P. है, जिनका सार्वअंतर $\mathrm{d}$ है तथा जिनके पहले पद क्रमशः $\mathrm{A}, \mathrm{A}+1, \mathrm{~A}+2$, है। माना $\mathrm{A}_1, \mathrm{~A}_2, \mathrm{~A}_3$ के $7$ वाँ, $9$ वाँ व $17$ वाँ पद क्रमश: $a, b, c$ है तथा $\left|\begin{array}{lll}\mathrm{a} & 7 & 1 \\ 2 \mathrm{~b} & 17 & 1 \\ \mathrm{c} & 17 & 1\end{array}\right|+70=0$ है। यदि $\mathrm{a}=29$, है, तो उस $AP$ जिसका पहला पद $\mathrm{c}-$ $\mathrm{a}-\mathrm{b}$ है तथा सार्वअंतर $\frac{\mathrm{d}}{12}$ है, के प्रथम $20$ पदों का योग बराबर ____________ है।

  • [JEE MAIN 2023]