माना कुछ $\alpha, \beta \in \mathbb{R}$ के लिये समीकरण निकाय $ \alpha x+2 y+z=1 $ $ 2 \alpha x+3 y+z=1 $ $ 3 x+\alpha y+2 z=\beta$ है। निम्न में से कौनसा सही नहीं है

  • [JEE MAIN 2023]
  • A

     इसका कोई हल नहीं हैं यदि $\alpha=-1$ तथा $\beta \neq 2$ है।

  • B

     इसका $\alpha=-1$ तथा सभी $\beta \in \mathbb{R}$ के लिये कोई हल नहीं है।

  • C

     इसका $\alpha=3$ तथा सभी $\beta \neq 2$ के लिये कोई नहीं है।

  • D

     इसका सभी $\alpha \neq-1$ तथा $\beta=2$ के लिये कोई हल नहीं है।

Similar Questions

$\left|\begin{array}{cc}x & x+1 \\ x-1 & x\end{array}\right|$ का मान ज्ञात कीजिए।

रैखिक समीकरण निकाय के लिए निम्न में से कौनसा सही नहीं है

  • [JEE MAIN 2023]

यदि $\Delta  = \left| {\,\begin{array}{*{20}{c}}a&{a + b}&{a + b + c}\\{3a}&{4a + 3b}&{5a + 4b + 3c}\\{6a}&{9a + 6b}&{11a + 9b + 6c}\end{array}\,} \right|$ जहाँ $a = i,b = \omega ,c = {\omega ^2}$, तब $\Delta $का मान होगा

रैखिक समीकरणों का निकाय ${a_1}x + {b_1}y + {c_1}z + {d_1} = 0$, ${a_2}x + {b_2}y + {c_2}z + {d_2} = 0$ तथा ${a_3}x + {b_3}y + {c_3}z + {d_3} = 0$ पर विचार करते है। माना सारणिक $\left| {\,\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}\,} \right|$,$\Delta (a,b,c)$ द्वारा प्रदर्शित करते हैं यदि $\Delta (a,b,c) \ne 0$, तब समीकरणों के अद्वितीय हल के लिये $x$ का मान है

यदि $S\, 'b'$ की उन विभिन्न मानों का समुच्चय है जिनके लिए निम्न रैखिक समीकरण निकाय

$x+y+z=1$

$x+a y+z=1$

$a x+b y+z=0$

का कोई हल नहीं है, तो $S$ :

  • [JEE MAIN 2017]