The number of elements in the set $\left\{ n \in N : 10 \leq n \leq 100\right.$ and $3^{ n }-3$ is a multiple of $7\}$ is $........$.
$15$
$14$
$13$
$12$
$S=\{(x, y, z): x, y, z \in Z, x+2 y+3 z=42$ $\mathrm{x}, \mathrm{y}, \mathrm{z} \geq 0\}$ ...........
Let $A =\{ x \in R :| x +1|<2\}$ and $B=\{x \in R:|x-1| \geq 2\}$. Then which one of the following statements is NOT true ?
If $\mathrm{A}=\{\mathrm{x} \in {R}:|\mathrm{x}-2|>1\}, \mathrm{B}=\left\{\mathrm{x} \in {R}: \sqrt{\mathrm{x}^{2}-3}>1\right\}$, $\mathrm{C}=\{\mathrm{x} \in {R}:|\mathrm{x}-4| \geq 2\}$ and ${Z}$ is the set of all integers, then the number of subsets of the set $(A \cap B \cap C)^{c} \cap {Z}$ is .... .
If $X = \{ {4^n} - 3n - 1:n \in N\} $ and $Y = \{ 9(n - 1):n \in N\} ,$ then $X \cup Y$ is equal to
Let $S$ be the set of all ordered pairs $(x, y)$ of positive integers satisfying the condition $x^2-y^2=12345678$. Then,