If $X = \{ {4^n} - 3n - 1:n \in N\} $ and $Y = \{ 9(n - 1):n \in N\} ,$ then $X \cup Y$ is equal to
$X$
$Y$
$N$
None of these
If $A = \{x, y\}$ then the power set of $A$ is
Let $A=\left\{n \in N \mid n^{2} \leq n+10,000\right\}, B=\{3 k+1 \mid k \in N\}$ and $C=\{2 k \mid k \in N\}$, then the sum of all the elements of the set $A \cap(B-C)$ is equal to $.....$
$S=\{(x, y, z): x, y, z \in Z, x+2 y+3 z=42$ $\mathrm{x}, \mathrm{y}, \mathrm{z} \geq 0\}$ ...........
If $X = \{ {8^n} - 7n - 1:n \in N\} $ and $Y = \{ 49(n - 1):n \in N\} ,$ then
Let $\bigcup \limits_{i=1}^{50} X_{i}=\bigcup \limits_{i=1}^{n} Y_{i}=T$ where each $X_{i}$ contains $10$ elements and each $Y_{i}$ contains $5$ elements. If each element of the set $T$ is an element of exactly $20$ of sets $X_{i}$ 's and exactly $6$ of sets $Y_{i}$ 's, then $n$ is equal to