વર્તુળો $x^2 +y^2 - 8x - 2y + 1 = 0$ અને $x^2 + y^2 + 6x + 8y = 0$ ને સામાન્ય સ્પર્શકોની સંખ્યા મેળવો.
એક
ચાર
બે
ત્રણ
બિંદુ $(a, b)$ માંથી પસાર થતા તથા વર્તૂળ ${x^2} + {y^2} = {p^2}$ ને લંબચ્છેદી હોય તેવા વર્તૂળના કેન્દ્રનો બિંદુગણનું સમીકરણ મેળવો.
વર્તુળ $C_1:(x-4)^2+(y-5)^2=4$ ની, વર્તુળ $C_1$ ના કેન્દ્ર સાથે $\theta_i$ ખૂણો આંતરતી જીવાઓનના મધ્યબિંદુુોનો બિંદુપથ એ ત્રિજ્યા $r_i$ વાળુ વર્તુળ છે. જો $\theta_1=\frac{\pi}{3}, \theta_3=\frac{2 \pi}{3}$ અને $r_1^2=r_2^2+r_3^2$, હોય,તો $\theta_2=.......$
બે સમાન ત્રિજ્યા ધરાવતા વર્તુળો બિંદુ $(0, 1)$ અને $(0, -1)$ માં છેદે છે બિંદુ $(0, 1)$ આગળ એક વર્તુળનો સ્પર્શક આંતરવામાં આવે તો તે બીજા વર્તુળના કેન્દ્ર માંથી પસાર થી તો બંને વર્તુળના કેન્દ્ર વચ્ચેનું અંતર મેળવો.
જો વર્તુળો $x^{2}+y^{2}+6 x+8 y+16=0$ અને $x^{2}+y^{2}+2(3-\sqrt{3}) x+x+2(4-\sqrt{6}) y$ $= k +6 \sqrt{3}+8 \sqrt{6}, k >0$ એ બિંદુ $P(\alpha, \beta)$ આગળ અંદરની બાજુએ સ્પર્શે છે તો $(\alpha+\sqrt{3})^{2}+(\beta+\sqrt{6})^{2}$ ની કિમંત મેળવો.
વર્તૂળો ${(x - 1)^2} + {(y - 3)^2} = {r^2}$ અને ${x^2} + {y^2} - 8x + 2y + 8 = 0$ બે ભિન્ન બિંદુમાં છેદે તો,