The number obtained on rationalizing the denominator of $\frac{1}{7-\sqrt{2}}$ is

  • A

    $\frac{7+\sqrt{2}}{47}$

  • B

    $\frac{\sqrt{7}+2}{5}$

  • C

    $\frac{\sqrt{7}-2}{3}$

  • D

    $\frac{\sqrt{7}+2}{3}$

Similar Questions

State whether each of the following statements is true or false

Each integer is a whole number.

Express the following in the form $\frac{p}{q},$ where $p$ and $q$ are integers and $q \neq 0 .$

$0 . \overline{125}$

Represent $\sqrt{20}$ on the number line.

If $\sqrt{2}=1.414, \sqrt{3}=1.732,$ then find the value of $\frac{4}{3 \cdot \sqrt{3}-2 \cdot \sqrt{2}}+\frac{3}{3 \cdot \sqrt{3}+2 \cdot \sqrt{2}}$

Find four rational numbers between $\frac{2}{9}$ and $\frac{2}{7}$