The number obtained on rationalizing the denominator of $\frac{1}{7-\sqrt{2}}$ is
$\frac{7+\sqrt{2}}{47}$
$\frac{\sqrt{7}+2}{5}$
$\frac{\sqrt{7}-2}{3}$
$\frac{\sqrt{7}+2}{3}$
Locate $\sqrt{5}, \sqrt{10}$ and $\sqrt{17}$ on the number line.
Is $0.3 \overline{7}$ a rational number or an irrational number?
$\sqrt[4]{\sqrt[3]{2^{2}}}$ equals
If $a=2+\sqrt{3},$ then find the value of $a-\frac{1}{a}$
Rationalise the denominator in each of the following
$\frac{18}{3 \sqrt{2}-2 \sqrt{3}}$