The number obtained on rationalizing the denominator of $\frac{1}{7-\sqrt{2}}$ is

  • A

    $\frac{7+\sqrt{2}}{47}$

  • B

    $\frac{\sqrt{7}+2}{5}$

  • C

    $\frac{\sqrt{7}-2}{3}$

  • D

    $\frac{\sqrt{7}+2}{3}$

Similar Questions

Locate $\sqrt{5}, \sqrt{10}$ and $\sqrt{17}$ on the number line.

Is $0.3 \overline{7}$ a rational number or an irrational number?

$\sqrt[4]{\sqrt[3]{2^{2}}}$ equals

If $a=2+\sqrt{3},$ then find the value of $a-\frac{1}{a}$

Rationalise the denominator in each of the following

$\frac{18}{3 \sqrt{2}-2 \sqrt{3}}$