Express the following in the form $\frac{p}{q},$ where $p$ and $q$ are integers and $q \neq 0 .$
$0 . \overline{125}$
Let, $x=0 . \overline{125}$
$\therefore x=0.125125 \ldots$ $\ldots \ldots(1)$
Multiplying both the sides by $1000 .$
$1000 x=125.125 \ldots$ $.......(2)$
Subtract $(1)$ from $(2).$
$1000 x=125.125 \ldots$
$\frac{-x=0.125 \cdots}{999 x=125}$
$\therefore x=\frac{125}{999}$
Thus, $0 . \overline{125}=\frac{125}{999}$
Simplify the following:
$\sqrt{45}-3 \sqrt{20}+4 \sqrt{5}$
Represent $\sqrt{10}$ on the number line.
Simplify the following:
$4 \sqrt{28} \div 3 \sqrt{7}$
Write the following in decimal form and state what kind of decimal expansion each has
$\frac{5}{13}$
Simplify: ${(256)^4}^{-\frac{3}{2}}$