If $\sqrt{2}=1.414, \sqrt{3}=1.732,$ then find the value of $\frac{4}{3 \cdot \sqrt{3}-2 \cdot \sqrt{2}}+\frac{3}{3 \cdot \sqrt{3}+2 \cdot \sqrt{2}}$
$2.063$
$1.063$
$2.563$
$1.563$
Express $0 . \overline{4}$ in the form $\frac{p}{q} ;$ where $p$ and $q$ are integers and $q \neq 0$
Simplify: $\frac{7 \sqrt{3}}{\sqrt{10}+\sqrt{3}}-\frac{2 \sqrt{5}}{\sqrt{6}+\sqrt{5}}-\frac{3 \sqrt{2}}{\sqrt{15}+3 \sqrt{2}}$
Find three different irrational numbers between the rational numbers $\frac{1}{4}$ and $\frac{4}{5}$.
Locate $\sqrt{5}, \sqrt{10}$ and $\sqrt{17}$ on the number line.
Find three rational numbers between
$0.1$ and $0.11$