Which of the following is true

  • A

    $p \Rightarrow q \equiv \;\sim p \Rightarrow \;\sim q$

  • B

    $\sim (p \Rightarrow \;\sim q) \equiv \;\sim p \wedge q$

  • C

    $\sim (\sim p \Rightarrow \,\sim q) \equiv \sim p \wedge q$

  • D

    $\sim (p \Leftrightarrow q) \equiv [\sim (p \Rightarrow q) \wedge \sim (q \Rightarrow p)]$

Similar Questions

If $p , q$ and $r$ are three propositions, then which of the following combination of truth values of $p , q$ and $r$ makes the logical expression $\{(p \vee q) \wedge((\sim p) \vee r)\} \rightarrow((\sim q) \vee r)$ false ?

  • [JEE MAIN 2023]

Which of the following is equivalent to the Boolean expression $\mathrm{p} \wedge \sim \mathrm{q}$ ?

  • [JEE MAIN 2021]

Let $*, \square \in\{\wedge, \vee\}$ be such that the Boolean expression $(\mathrm{p} * \sim \mathrm{q}) \Rightarrow(\mathrm{p} \square \mathrm{q})$ is a tautology. Then :

  • [JEE MAIN 2021]

The statement $(\mathrm{p} \wedge(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r})) \rightarrow \mathrm{r}$ is :

  • [JEE MAIN 2021]

Given the following two statements :

$\left( S _{1}\right):( q \vee p ) \rightarrow( p \leftrightarrow \sim q )$ is a tautology.

$\left( S _{2}\right): \sim q \wedge(\sim p \leftrightarrow q )$ is a fallacy.

Then

  • [JEE MAIN 2020]