$\sim S \vee(\sim r \wedge s)$ का निषेथ समतुल्य हैं
$s \wedge r$
$\;s \wedge \sim r$
$\;s \wedge \left( {r \wedge \sim s} \right)$
$\;s \vee \left( {r \vee \sim s} \right)$
प्रकथन $-1$ : $\sim(p \leftrightarrow \sim q)$ और $p \leftrightarrow q$ तुल्यमान (equivalent) हैं।
प्रकथन $-2$ $: \sim(p \leftrightarrow \sim q)$ एक पुनरूक्ति (tautology) है।
निम्न में से कौनसा कथन नहीं है
यदि बूलीय व्यंजक $( p \Rightarrow q ) \Leftrightarrow( q *(\sim p ))$ एक पुनरूक्ति है, तो बूलीय व्यंजक $p *(\sim q )$ किस के तुल्य है?
$q \vee((\sim q) \wedge p)$ का निषेधन किस के तुल्य है ?
$\Delta \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\}$ के विकल्पों की संख्या, ताकि $( p \Delta q ) \Rightarrow(( p \Delta \sim q ) \vee((\sim p ) \Delta q ))$ पुनरूक्ति है, होगी