The negation of $ \sim s \vee \left( { \sim r \wedge s} \right)$ is equivalent to :
$s \wedge r$
$\;s \wedge \sim r$
$\;s \wedge \left( {r \wedge \sim s} \right)$
$\;s \vee \left( {r \vee \sim s} \right)$
Negation of the statement : - $\sqrt{5}$ is an integer or $5$ is irrational is
The false statement in the following is
The negation of the Boolean expression $x \leftrightarrow \sim y$ is equivalent to
Negation of the statement $(p \vee r) \Rightarrow(q \vee r)$ is :
If the truth value of the statement $p \to \left( { \sim q \vee r} \right)$ is false $(F)$, then the truth values of the statement $p, q, r$ are respectively