Negation of the statement $(p \vee r) \Rightarrow(q \vee r)$ is :
$\mathrm{p} \wedge \sim \mathrm{q} \wedge \sim \mathrm{r}$
$\sim \mathrm{p} \wedge \mathrm{q} \wedge \sim \mathrm{r}$
$\sim \mathrm{p} \wedge \mathrm{q} \wedge \mathrm{r}$
$\mathrm{p} \wedge \mathrm{q} \wedge \mathrm{r}$
Which of the following is a tautology?
The false statement in the following is
$(p\; \wedge \sim q) \wedge (\sim p \vee q)$ is
Which of the following is not a statement
Among the two statements
$(S1):$ $( p \Rightarrow q ) \wedge( q \wedge(\sim q ))$ is a contradiction and
$( S 2):( p \wedge q ) \vee((\sim p ) \wedge q ) \vee$
$( p \wedge(\sim q )) \vee((\sim p ) \wedge(\sim q ))$ is a tautology