The product $\left(1+\tan 1^{\circ}\right)\left(1+\tan 2^{\circ}\right)\left(1+\tan 3^{\circ}\right)$ $. .\left(1+\tan 45^{\circ}\right)$ equals

  • [KVPY 2010]
  • A

    $2^{21}$

  • B

    $2^{22}$

  • C

    $2^{23}$

  • D

    $2^{25}$

Similar Questions

If the arcs of the same lengths in two circles subtend angles $65^{\circ}$ and $110^{\circ}$ at the centre, find the ratio of their radii.

If ${\tan ^2}\alpha {\tan ^2}\beta + {\tan ^2}\beta {\tan ^2}\gamma + {\tan ^2}\gamma {\tan ^2}\alpha $$ + 2{\tan ^2}\alpha {\tan ^2}\beta {\tan ^2}\gamma = 1,$ then the value of ${\sin ^2}\alpha + {\sin ^2}\beta + {\sin ^2}\gamma $ is

The value of $2({\sin ^6}\theta + {\cos ^6}\theta ) - 3({\sin ^4}\theta + {\cos ^4}\theta ) + 1$ is

Prove that $\cos \left(\frac{\pi}{4}-x\right) \cos \left(\frac{\pi}{4}-y\right)-\sin \left(\frac{\pi}{4}-x\right) \sin \left(\frac{\pi}{4}-y\right)=\sin (x+y)$

Find, $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$ for $\cos x=-\frac{1}{3}, x$ in quadrant $III.$