Let $S$ be the set of all values of $a_1$ for which the mean deviation about the mean of $100$ consecutive positive integers $a _1, a _2, a _3, \ldots ., a _{100}$ is $25$. Then $S$ is
$\phi$
$\{99\}$
$N$
$\{9\}$
The mean and the standard deviation (s.d.) of $10$ observations are $20$ and $2$ resepectively. Each of these $10$ observations is multiplied by $\mathrm{p}$ and then reduced by $\mathrm{q}$, where $\mathrm{p} \neq 0$ and $\mathrm{q} \neq 0 .$ If the new mean and new s.d. become half of their original values, then $q$ is equal to
The mean and standard deviation of $20$ observations are found to be $10$ and $2$ respectively. On rechecking, it was found that an observation $8$ was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
If it is replaced by $12$
Let the mean and standard deviation of marks of class $A$ of $100$ students be respectively $40$ and $\alpha( > 0)$, and the mean and standard deviation of marks of class $B$ of $n$ students be respectively $55$ and $30-\alpha$. If the mean and variance of the marks of the combined class of $100+ n$ students are respectively $50$ and $350$,then the sum of variances of classes $A$ and $B$ is
If $M.D.$ is $12$, the value of $S.D.$ will be
The mean and standard deviation of a group of $100$ observations were found to be $20$ and $3,$ respectively. Later on it was found that three observations were incorrect, which were recorded as $21,21$ and $18 .$ Find the mean and standard deviation if the incorrect observations are omitted.