આકૃતિમાં રહેલ સદિશ $\overrightarrow{ OA }, \overrightarrow{ OB }$ અને $\overrightarrow{ OC }$ ના મૂલ્ય સમાન છે. $\overrightarrow{ OA }+\overrightarrow{ OB }-\overrightarrow{ OC }$ ની $x$-અક્ષ સાથેની દિશા કેટલી થાય?

981-902

  • [JEE MAIN 2021]
  • A

    $\tan ^{-1} \frac{(1-\sqrt{3}-\sqrt{2})}{(1+\sqrt{3}+\sqrt{2})}$

  • B

    $\tan ^{-1} \frac{(\sqrt{3}-1+\sqrt{2})}{(1+\sqrt{3}-\sqrt{2})}$

  • C

    $\tan ^{-1} \frac{(\sqrt{3}-1+\sqrt{2})}{(1-\sqrt{3}+\sqrt{2})}$

  • D

    $\tan ^{-1} \frac{(1+\sqrt{3}-\sqrt{2})}{(1-\sqrt{3}-\sqrt{2})}$

Similar Questions

નીચે આપેલ કોલમ $-I$ માં સદિશો ,$\vec  a \,$ $\vec  b \,$  અને  $\vec  c \,$ વચ્ચેનો સંબંધ અને કોલમ $-II$ માં ,$\vec  a \,$ $\vec  b \,$  અને  $\vec  c \,$ સદિશો $XY$ સમતલમાં નમન સાથે દર્શાવેલ છે, તો કોલમ $-I$ અને કોલમ $-II$ ને સારી રીતે જોડો. 

 કોલમ $-I$  કોલમ $-II$
$(a)$ $\vec a \, + \,\,\vec b \, = \,\,\vec c $ $(i)$ Image
$(b)$ $\vec a \, - \,\,\vec c \, = \,\,\vec b$ $(ii)$ Image
$(c)$ $\vec b \, - \,\,\vec a \, = \,\,\vec c $ $(iii)$ Image
$(d)$ $\vec a \, + \,\,\vec b \, + \,\,\vec c =0$ $(iv)$ Image

$\overrightarrow A \, = \,3\widehat i\, + \,2\widehat j$ , $\overrightarrow B \, = \widehat {\,i} + \widehat j - 2\widehat k$ છે, તો તેમનો સરવાળો બૈજિક રીતે કરો.

બે બળોના મૂલ્યોનો સરવાળો $18 \,N$ છે.અને $12 \,N$ પરિણામી મૂલ્ય એ નાના મૂલ્યના બળને લંબ છે.તો બંને બળોના મૂલ્યો કેટલા થશે?

સદિશોની બાદબાકી સમજાવો. 

$ABC$ એ સમબાજુ ત્રિકોણ છે. દરેક બાજુની લંબાઈ $'a'$ અને તેનું પરિકેન્દ્ર $O$ છે. તો $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=.......$