चित्र में सदिशों $\overrightarrow{ OA }, \overrightarrow{ OB }$ तथा $\overrightarrow{ OC }$ के परिमाण समान है। $x$ - अक्ष के साथ $\overrightarrow{ OA }+\overrightarrow{ OB }-\overrightarrow{ OC }$ की दिशा होगी।
$\tan ^{-1} \frac{(1-\sqrt{3}-\sqrt{2})}{(1+\sqrt{3}+\sqrt{2})}$
$\tan ^{-1} \frac{(\sqrt{3}-1+\sqrt{2})}{(1+\sqrt{3}-\sqrt{2})}$
$\tan ^{-1} \frac{(\sqrt{3}-1+\sqrt{2})}{(1-\sqrt{3}+\sqrt{2})}$
$\tan ^{-1} \frac{(1+\sqrt{3}-\sqrt{2})}{(1-\sqrt{3}-\sqrt{2})}$
विस्थापन $25\hat i - 6\hat j\,\,m$ में कितना विस्थापन जोड़ें कि $X-$ दिशा में $7.0 \,m $ का विस्थापन प्राप्त हो
दिये गये बलों के युग्म मे से किस युग्म का परिणामी $2\, N$ नहीं हो सकता
सदिश $\overrightarrow{ A }$ और $\overrightarrow{ B } .$ इस प्रकार हैं कि $|\overrightarrow{ A }+\overrightarrow{ B }|=|\overrightarrow{ A }-\overrightarrow{ B }|$ इन दो सदिशों के बीच का कोण है
$10\, N$ के पाँच एकसमान बल एक बिन्दु पर आरोपित किये गये हैं तथा यह सभी एक ही तल में हैं। यदि उनके मध्य कोण बराबर हों तो इनका परिणामी ............... $\mathrm{N}$ होगा