The locus of mid-points of the line segments joining $(-3,-5)$ and the points on the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ is :

  • [JEE MAIN 2021]
  • A

    $9 x^{2}+4 y^{2}+18 x+8 y+145=0$

  • B

    $36 x^{2}+16 y^{2}+90 x+56 y+145=0$

  • C

    $36 x^{2}+16 y^{2}+108 x+80 y+145=0$

  • D

    $36 x^{2}+16 y^{2}+72 x+32 y+145=0$

Similar Questions

Let $\mathrm{A}(\alpha, 0)$ and $\mathrm{B}(0, \beta)$ be the points on the line $5 x+7 y=50$. Let the point $P$ divide the line segment $A B$ internally in the ratio $7: 3$. Let $3 x-$ $25=0$ be a directrix of the ellipse $E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ and the corresponding focus be $S$. If from $S$, the perpendicular on the $\mathrm{x}$-axis passes through $\mathrm{P}$, then the length of the latus rectum of $\mathrm{E}$ is equal to

  • [JEE MAIN 2024]

In a group of $100$ persons $75$ speak English and $40$ speak Hindi. Each person speaks at least one of the two languages. If the number of persons, who speak only English is $\alpha$ and the number of persons who speak only Hindi is $\beta$, then the eccentricity of the ellipse $25\left(\beta^2 x^2+\alpha^2 y^2\right)=\alpha^2 \beta^2$ is $.......$

  • [JEE MAIN 2023]

The smallest possible positive slope of a line whose $y$-intercept is $5$ and which has a common point with the ellipse $9 x^2+16 y^2=144$ is

  • [KVPY 2011]

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{100}=1$

If the lines $x -2y = 12$ is tangent to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ at the point $\left( {3,\frac{-9}{2}} \right)$, then the length of the latus rectum of the ellipse is

  • [JEE MAIN 2019]