The smallest possible positive slope of a line whose $y$-intercept is $5$ and which has a common point with the ellipse $9 x^2+16 y^2=144$ is

  • [KVPY 2011]
  • A

    $\frac{3}{4}$

  • B

    $1$

  • C

    $\frac{4}{3}$

  • D

    $\frac{9}{16}$

Similar Questions

Area of the quadrilaterals formed by drawing tangents at the ends of latus recta of $\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1$ is

Let $S$ and $S\,'$ be the foci of an ellipse and $B$ be any one of the extremities of its minor axis. If $\Delta S\,'BS$ is a right angled triangle with right angle at $B$ and area $(\Delta S\,'BS) = 8\,sq.$ units, then the length of a latus rectum of the ellipse is

  • [JEE MAIN 2019]

A man running round a race-course notes that the sum of the distance of two flag-posts from him is always $10\ metres$ and the distance between the flag-posts is $8\ metres$. The area of the path he encloses in square metres is

The ellipse $E_1: \frac{x^2}{9}+\frac{y^2}{4}=1$ is inscribed in a rectangle $R$ whose sides are parallel to the coordinate axes.

Another ellipse $E _2$ passing through the point $(0,4)$ circumscribes the rectangle $R$.. The eccentricity of the ellipse $E _2$ is

  • [IIT 2012]

If $P \equiv (x,\;y)$, ${F_1} \equiv (3,\;0)$, ${F_2} \equiv ( - 3,\;0)$ and $16{x^2} + 25{y^2} = 400$, then $P{F_1} + P{F_2}$ equals

  • [IIT 1998]