Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{100}=1$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The given equation is $\frac{x^{2}}{25}+\frac{y^{2}}{100}=1$ or $\frac{x^{2}}{5^{2}}+\frac{y^{2}}{10^{2}}=1$

Here, the denominator of $\frac{y^{2}}{100}$ is greater than the denominator of $\frac{x^{2}}{25}$

Therefore, the major axis is along the $y-$ axis, while the minor axis is along the $x-$ axis.

On comparing the given equation with $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1,$ we obtain $b=5$ and $a=10$

$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{100-25}=\sqrt{75}=5 \sqrt{3}$

Therefore,

The coordinates of the foci are $(0, \,\pm 5 \sqrt{3})$

The coordinates of the vertices are $(0,\,±10)$

Length of major axis $=2 a=20$

Length of minor axis $=2 b=10$

Eccentricity, $e=\frac{c}{a}=\frac{5 \sqrt{3}}{10}=\frac{\sqrt{3}}{2}$

Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 25}{10}=5$

Similar Questions

Product of slopes of common tangents to the ellipse $\frac{x^2}{32} + \frac{y^2}{8} = 1$ and parabola $y^2 = 8x$ is -

The normal at a point $P$ on the ellipse $x^2+4 y^2=16$ meets the $x$-axis at $Q$. If $M$ is the mid point of the line segment $P Q$, then the locus of $M$ intersects the latus rectums of the given ellipse at the points

  • [IIT 2009]

The length of the latus rectum of the ellipse $5{x^2} + 9{y^2} = 45$ is

If the line $x\cos \alpha + y\sin \alpha = p$ be normal to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, then

The ellipse $E_1: \frac{x^2}{9}+\frac{y^2}{4}=1$ is inscribed in a rectangle $R$ whose sides are parallel to the coordinate axes.

Another ellipse $E _2$ passing through the point $(0,4)$ circumscribes the rectangle $R$.. The eccentricity of the ellipse $E _2$ is

  • [IIT 2012]