If two circles ${(x - 1)^2} + {(y - 3)^2} = {r^2}$ and ${x^2} + {y^2} - 8x + 2y + 8 = 0$ intersect in two distinct points, then
$2 < r < 8$
$r = 2$
$r < 2$
$r > 2$
If one of the diameters of the circle $x^{2}+y^{2}-2 \sqrt{2} x$ $-6 \sqrt{2} y+14=0$ is a chord of the circle $(x-2 \sqrt{2})^{2}$ $+(y-2 \sqrt{2})^{2}=r^{2}$, then the value of $r^{2}$ is equal to
The two circles ${x^2} + {y^2} - 2x + 22y + 5 = 0$ and ${x^2} + {y^2} + 14x + 6y + k = 0$ intersect orthogonally provided $k$ is equal to
The equation of radical axis of the circles ${x^2} + {y^2} + x - y + 2 = 0$ and $3{x^2} + 3{y^2} - 4x - 12 = 0,$ is
If the curves, $x^{2}-6 x+y^{2}+8=0$ and $\mathrm{x}^{2}-8 \mathrm{y}+\mathrm{y}^{2}+16-\mathrm{k}=0,(\mathrm{k}>0)$ touch each other at a point, then the largest value of $\mathrm{k}$ is
Let the circles $C_1:(x-\alpha)^2+(y-\beta)^2=r_1^2$ and $C_2:(x-8)^2+\left(y-\frac{15}{2}\right)^2=r_2^2$ touch each other externally at the point $(6,6)$. If the point $(6,6)$ divides the line segment joining the centres of the circles $C_1$ and $C_2$ internally in the ratio $2: 1$, then $(\alpha+\beta)+4\left(r_1^2+r_2^2\right)$ equals