यदि $\frac{x}{\alpha } + \frac{y}{\beta } = 1$ वृत्त ${x^2} + {y^2} = {a^2}$ को स्पर्श करती है, तब बिन्दु $(1/\alpha ,\,1/\beta )$ होगा
सरल रेखा पर
वृत्त पर
परवलय पर
दीर्घवृत्त पर
वृत्त ${x^2} + {y^2} = 9$ के बिन्दु $\left( {\frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right)$ पर अभिलम्ब का समीकरण है
बिन्दु $(-1,2)$ से वृत्त ${x^2} + {y^2} + 2x - 4y + 4 = 0$ पर डाली जाने वाली स्पर्श रेखाओं की संख्या है
वृत्त ${x^2} + {y^2} - 4x - 2y - 11 = 0$ पर बिन्दु $(4, 5)$ से स्पर्श रेखायें खींची जाती हैं तो इन स्पर्श रेखाओं व त्रिज्याओ से बने चतुभ्र्ज का क्षेत्रफल ............ वर्ग इकाई है
रेखा $lx + my + n = 0$, वृत्त ${x^2} + {y^2} + 2gx + 2fy + c = 0$ का अभिलम्ब है, यदि
माना वृत्त $( x -2)^2+( y +1)^2=\frac{169}{4}$ की एक जीवा $AB$ की लम्बाई 12 है। यदि $A$ तथा $B$ पर खींची गई वृत्त की स्पर्श रेखाएँ बिन्दु $P$ पर मिलती हैं, तो बिन्दु $P$ की जीवा $AB$ से दूरी का पाँच गुना बराबर है $........$.