रेखा $3x + 2y = 24$, $y$-अक्ष को $A$ पर एवं $x$-अक्ष को $B$ पर मिलती है। $AB$ का लम्ब समद्विभाजक $(0, - 1)$ से जाने वाली एवं $x$-अक्ष के समान्तर रेखा को $C$ पर मिलता है। त्रि.भुज $ABC$ का क्षेत्रफल .................. $\mathrm{sq. \, units}$ है 

  • A

    $182$

  • B

    $91$

  • C

    $48$

  • D

    इनमें से कोई नहीं

Similar Questions

माना एक समांतर चतुर्भुज की दो संलग्न भुजाओं के समीकरण $2 x-3 y=-23$ तथा $5 x+4 y=23$ हैं। यदि इसके एक विकर्ण $\mathrm{AC}$ का समीकरण $3 x+7 y=23$ है तथा $A$ की दूसरे विकर्ण से दूरी $d$ है, तो $50 \mathrm{~d}^2$ बराबर है:

  • [JEE MAIN 2023]

त्रिभुज, जिसके शीर्ष $P(2,\;2),\;Q(6,\; - \;1)$ व $R(7,\;3)$ हैं, की माध्यिका $PS$ है। बिन्दु $(1, -1)$ से जाने वाली तथा माध्यिका $PS$ के समान्तर रेखा का समीकरण है   

  • [JEE MAIN 2014]

रेखाओं $x + y - 4 = 0,\,$ $3x + y = 4$ तथा $x + 3y = 4$ से बना त्रिभुज है

  • [IIT 1983]

माना एक सांद्रिभुज त्रिगुण $ABC$ में $A$ बिंदु $(-1,0),$ $\angle \mathrm{A}=\frac{2 \pi}{3}, \mathrm{AB}=\mathrm{AC}$ है तथा $\mathrm{B}$, धनात्मक $\mathrm{x}$-अक्ष पर है। यदि $\mathrm{BC}=4 \sqrt{3}$ तथा रेखा $\mathrm{BC}$, रेखा $\mathrm{y}=\mathrm{x}+3$ को $(\alpha, \beta)$ पर काटती है, तो $\frac{\beta^4}{\alpha^2}$ बराबर है :

  • [JEE MAIN 2024]

एक बिन्दु इस प्रकार गति करता है, कि इस बिन्दु तथा बिन्दुओं $(1, 5)$ तथा $ (3, -7)$ से बने त्रिभुज का क्षेत्रफल $21$ वर्ग इकाई है, तब बिन्दु का बिन्दुपथ होगा